Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 15 de 15
Filtre
1.
Earth System Science Data ; 15(5):1947-1968, 2023.
Article Dans Anglais | ProQuest Central | ID: covidwho-2319341

Résumé

Volatile organic compounds (VOCs) have direct influences on air quality and climate. They indeed play a key role in atmospheric chemistry as precursors of secondary pollutants, such as ozone (O3) and secondary organic aerosols (SOA). In this respect, long-term datasets of in situ atmospheric measurements are crucial for characterizing the variability of atmospheric chemical composition, its sources, and trends. The ongoing establishment of the Aerosols, Cloud, and Trace gases Research InfraStructure (ACTRIS) allows implementation of the collection and provision of such high-quality datasets. In this context, online and continuous measurements of O3, nitrogen oxides (NOx), and aerosols have been carried out since 2012 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphérique) observatory, located in the Paris region, France. Within the last decade, VOC measurements were conducted offline at SIRTA, until the implementation of real-time monitoring which started in January 2020 using a proton-transfer-reaction quadrupole mass spectrometer (PTR-Q-MS).The dataset acquired during the first 2 years of online VOC measurements provides insights into their seasonal and diurnal variabilities. The additional long-term datasets obtained from co-located measurements (NOx, aerosol physical and chemical properties, meteorological parameters) are used to better characterize the atmospheric conditions and to further interpret the obtained results. Results also include insights into VOC main sources and the influence of meteorological conditions and air mass origin on their levels in the Paris region. Due to the COVID-19 pandemic, the year 2020 notably saw a quasi-total lockdown in France in spring and a lighter one in autumn. Therefore, the focus is placed on the impact of these lockdowns on the VOC variability and sources. A change in the behaviour of VOC markers for anthropogenic sources was observed during the first lockdown, reflecting a change in human activities. A comparison with gas chromatography data from the Paris city centre consolidates the regional representativity of the SIRTA station for benzene, while differences are observed for shorter-lived compounds with a notable impact of their local sources. This dataset could be further used as input for atmospheric models and can be found at 10.14768/f8c46735-e6c3-45e2-8f6f-26c6d67c4723 (Simon et al., 2022a).

2.
Environ Pollut ; 327: 121594, 2023 Jun 15.
Article Dans Anglais | MEDLINE | ID: covidwho-2296805

Résumé

Exposure to outdoor air pollution may affect incidence and severity of coronavirus disease 2019 (COVID-19). In this retrospective cohort based on patient records from the Greater Manchester Care Records, all first COVID-19 cases diagnosed between March 1, 2020 and May 31, 2022 were followed until COVID-19 related hospitalization or death within 28 days. Long-term exposure was estimated using mean annual concentrations of particulate matter with diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulphur dioxide (SO2) and benzene (C6H6) in 2019 using a validated air pollution model developed by the Department for Environment, Food and Rural Affairs (DEFRA). The association of long-term exposure to air pollution with COVID-19 hospitalization and mortality were estimated using multivariate logistic regression models after adjusting for potential individual, temporal and spatial confounders. Significant positive associations were observed between PM2.5, PM10, NO2, SO2, benzene and COVID-19 hospital admissions with odds ratios (95% Confidence Intervals [CI]) of 1.27 (1.25-1.30), 1.15 (1.13-1.17), 1.12 (1.10-1.14), 1.16 (1.14-1.18), and 1.39 (1.36-1.42), (per interquartile range [IQR]), respectively. Significant positive associations were also observed between PM2.5, PM10, SO2, or benzene and COVID-19 mortality with odds ratios (95% CI) of 1.39 (1.31-1.48), 1.23 (1.17-1.30), 1.18 (1.12-1.24), and 1.62 (1.52-1.72), per IQR, respectively. Individuals who were older, overweight or obese, current smokers, or had underlying comorbidities showed greater associations between all pollutants of interest and hospital admission, compared to the corresponding groups. Long-term exposure to air pollution is associated with developing severe COVID-19 after a positive SARS-CoV-2 infection, resulting in hospitalization or death.


Sujets)
Polluants atmosphériques , Pollution de l'air , COVID-19 , Ozone , Humains , Polluants atmosphériques/analyse , Études de cohortes , Études rétrospectives , Benzène , COVID-19/épidémiologie , SARS-CoV-2 , Pollution de l'air/effets indésirables , Pollution de l'air/analyse , Matière particulaire/analyse , Ozone/analyse , Royaume-Uni/épidémiologie , Exposition environnementale/analyse , Dioxyde d'azote/analyse
3.
Asian Journal of Chemistry ; 35(3):639-648, 2023.
Article Dans Anglais | Scopus | ID: covidwho-2273714

Résumé

Several transition metal complexes [ML(phth)], where M = Cu(II), Zn(II), Co(II) and Ni(II), X = phthalic acid and L = Schiff base generated from benzene-1,2,diamine and 4-chlorobenzaldehyde, were synthesized and characterized by IR, UV-Vis, 1H NMR, 13C NMR and mass spectra. According to the physico-chemical studies, all the synthesized metal(II) complexes have a square planar geometry. The DNA nuclease activity of the synthesized metal complexes was investigated using UV absorption assay and viscosity, validating the intercalative mechanism of binding. Antimicrobial activity of the ligand and its metal(II) complexes on various microorganisms was also investigated. The optimal form and biological accessibility of the metal complexes were examined by the Gaussian 09W algorithm. These compounds were screened for drug-like activity and pharmacokinetic studies using the free SWISS ADME online software. The positive outcomes of molecular docking studies on the COVID-19 virus and cancer DNA are interesting. © 2023 Chemical Publishing Co.. All rights reserved.

4.
Environmental Pollution ; Part 1. 316 (no pagination), 2023.
Article Dans Anglais | EMBASE | ID: covidwho-2268798

Résumé

The assessment of the health risks of volatile organic compounds (VOCs) emitted from landfills via dispersion model is crucial but also challenging because of remarkable variations in their emissions and meteorological conditions. This study used a probabilistic approach for the assessment of the health risks of typical VOCs by combining artificial neural network models for emission rates and a numerical dispersion model enhanced by probability analysis. A total of 8753 rounds of simulation were performed with distributions of waste compositions and the valid hourly meteorological conditions for 1 year. The concentration distributions and ranges of the typical health-risky VOCs after dispersion were analyzed with 95% probability. The individual and cumulative non-carcinogenic risks of the typical VOCs were acceptable with all values less than 1 in the whole study domain. For individual carcinogenic risks, only ethylbenzene, benzene, chloroform, and 1, 2-dichloroethane at extreme concentrations showed minor or moderate risks with a probability of 0.1%-1% and an impact distance of 650-3000 m at specific directions. The cumulative carcinogenic risks were also acceptable at 95% probability in the whole study domain, but exceeded 1 x 10-6 or even 1 x 10-4 at some extreme conditions, especially within the landfill area. The vertical patterns of the health risks with height initially increased, and then decreased rapidly, and the peak values were observed around the height of the emission source. The dispersion simulation and health risk assessment of the typical health-risky VOCs enhanced by Monte Carlo can accurately reflect their probabilistic dispersion patterns and health risks to surrounding residents from both spatial and temporal dimensions. With this approach, this study can provide important scientific basis and technical support for the health risk assessment and management of landfills.Copyright © 2022 Elsevier Ltd

5.
Sens Actuators B Chem ; 381: 133364, 2023 Apr 15.
Article Dans Anglais | MEDLINE | ID: covidwho-2280540

Résumé

Since December 2019, the rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a priority for public health. Although the lateral flow assay (LFA) sensor has emerged as a rapid and on-site SARS-CoV-2 detection technique, the conventional approach of using gold nanoparticles for the signaling probe had limitations in increasing the sensitivity of the sensor. Herein, our newly suggested methodology to improve the performance of the LFA system could amplify the sensor signal with a facile fabrication method by concentrating fluorescent organic molecules. A large Stokes shift fluorophore (single benzene) was encapsulated into polystyrene nanobeads to enhance the fluorescence intensity of the probe for LFA sensor, which was detected on the test line with a longpass filter under ultraviolet light irradiation. This approach provides comparatively high sensitivity with the limit of detection of 1 ng mL-1 for the SARS-CoV-2 spike protein and a fast detection process, which takes less than 20 min. Furthermore, our sensor showed higher performance than gold nanoparticle-based commercial rapid diagnostics test kits in clinical tests, proving that this approach is more suitable and reliable for the sensitive and rapid detection of viruses, bacteria, and other hazardous materials.

6.
Asian Journal of Atmospheric Environment ; 16(3), 2022.
Article Dans Anglais | Scopus | ID: covidwho-2040284

Résumé

The present study was conducted in Lucknow city to assess the impact of firecracker burning during Diwali, from 2 November 2021-6 November 2021 including the pre and post-Diwali days. The concentrations of PM10, PM2.5, SO2, NO2, CO, O3, benzene and toluene, were monitored from the Central Pollution Control Board site on an hourly basis. The Air Quality Index was also recorded for PM10, PM2.5, SO2 and NO2. A questionnaire survey was done with 51 doctors to know the reported complaints post-Diwali. On Diwali night the PM2.5 value reached 262 μg m-3 around 22:00 hours and the maximum value (900 μg m-3) was obtained on 5 November, reported from the Central School monitoring station. From Gomti Nagar highest PM2.5 value obtained on Diwali day was 538 μg m-3 at 23:00 hours reaching 519 μg m-3 post-Diwali. Areas belonging to the old part of the city witnessed higher variations as PM2.5 crossed 900 μg m-3, in Lalbagh and Talkatora areas. The multivariate analysis showed that on Diwali night there was an increase of 204, 386, 344 and 341 in the PM2.5 concentration reported from Gomtinagar, Central School, Talkatora and Lalbagh stations, showing that firecracker burning resulted in a significant increase in air pollution. The Toluene/Benzene ratio was mostly more than 1 indicating that toluene and benzene may be emitted from other sources as well including the mobile sources. Around 50-75% rise was seen in the number of patients post-Diwali. 57.1% of the reported cases had respiratory issues, followed by allergic reactions. The data obtained from Lalbagh, Talkatora and Central School showed that although the values remained high, a decreasing trend was seen in the AQI compared to previous years which is a good sign and may be attributed to public awareness and the ongoing pandemic making people conscious © 2022 by Asian Association for Atmospheric Environment

7.
Current Pharmaceutical Analysis ; 18(7):732-738, 2022.
Article Dans Anglais | ProQuest Central | ID: covidwho-2002401

Résumé

Aims: This study aims to determine the volatile chemical profile of ethanol-based hand sanitizer marketed in Brazil by HS-SPME/GC-MS. Background: Ethanol-based hand sanitizer has been used to protect against coronavirus disease (COVID-19). In general, these formulations are prepared using a carbomer. In 2020 and 2021, the production of hand sanitizer has increased due to the COVID-19 epidemic. Therefore, it is important to know the composition of this formulation because certain molecules present in some alcoholic mixtures can cause health problems. Methods: Ethanol-based hand sanitizer, AL1, AL2, BL1, CL1, DL1, EL1, FL1, and GL1 (ethanol derivative of fuel station), was purchased from manufacturers commercialized in Araguaína-TO and analyzed by HS-SPME/GC-MS for determining volatile chemical profile. Results: The analyses showed different compositions for the ethanol-based hand sanitizers. Samples AL1 and AL2 contained isopropyl alcohol, ethyl acetate, benzene, ethane-1,1-diethoxy, limonene, and other compounds. Linear alkanes were also detected. Only ethyl acetate and ethane-1,1-diethoxy were detected in CL1, in addition to ethanol. Thus, it is the most suitable sample among those analyzed. The presence of benzene, alkanes, and other hydrocarbons may be associated with the use of fuel ethanol to prepare these sanitizers, as shown in the sample GL1. Benzene, xylene, and toluene were found in FL1. This sample is the most contaminated among those analyzed. Conclusion: The chemical profile of commercial ethanol-based hand sanitizer from eight different samples sold in Araguaína-Brazil was established by GC-MS. Compounds like benzene and other alkanes were found in some samples. These results suggested possible contamination by alcohols unqualified in producing pharmaceutical substances. These analyzes are particularly relevant due to the pandemic situation to avoid COVID-19 proliferation. Benzene and other alkanes are harmful to human health and should be avoided in hand sanitizer production.

8.
Environ Int ; 167: 107449, 2022 09.
Article Dans Anglais | MEDLINE | ID: covidwho-1977245

Résumé

Human exposure to carcinogenic volatile organic compounds (VOCs), such as benzene, from hand sanitizers is a topic of current concern. In light of the heavy use of hand sanitizers during the COVID-19 pandemic, determination of exposure to toxicants present in these products deserves attention. The US Food and Drug Administration (FDA) had set an interim limit for benzene in alcohol-based hand sanitizers at 2000 parts-per-billion (ppb). We determined the concentrations of and exposure to three VOCs namely, benzene, toluene and styrene, in 200 hand sanitizers using high-resolution gas chromatography coupled with high-resolution mass spectrometry (HRGC-HRMS). Benzene, toluene and styrene were found in 31%, 25% and 32%, respectively, of the samples analyzed at mean concentrations of 395 (range: 0.181-22,300), 164 (range: 0.074-20,700) and 61.3 ng/g (range: 0.082-4200 ng/g), respectively. Benzene was found at concentrations > 2000 ng/g (above the FDA interim limit) in 5% of the samples, representing 9 brands. The mean potential dermal exposure doses (DEDs) to benzene (children/teenagers: 34.6; adults: 24.7 ng/kg-bw/d) were higher than those for toluene (children/teenagers: 14.4; adults: 10.3 ng/kg-bw/d) and styrene (children/teenagers: 5.37; adults: 3.83 ng/kg-bw/d) in the 200 hand sanitizers analyzed. The estimated cancer risk from exposure to benzene in children/teenagers and adults from hand sanitizer use (at an estimated usage rate of 5 g/day) was greater than the one-in-a-million risk benchmark (1.0 × 10-6) for 10% and 9% of the samples, respectively. To the best of our knowledge, this is the first study to determine both the concentrations of and exposure risks to benzene, toluene and styrene present in hand sanitizers.


Sujets)
COVID-19 , Désinfectants pour les mains , Composés organiques volatils , Adolescent , Adulte , Benzène/analyse , Dérivés du benzène/analyse , Enfant , Humains , Pandémies , Styrène/analyse , Toluène/analyse , États-Unis , Composés organiques volatils/analyse
9.
Toxics ; 10(5)2022 May 21.
Article Dans Anglais | MEDLINE | ID: covidwho-1953894

Résumé

BACKGROUND: The objective of this study is to evaluate the effects of traffic on human health comparing biomonitoring data measured during the COVID-19 lockdown, when restrictions led to a 40% reduction in airborne benzene in Rome and a 36% reduction in road traffic, to the same parameters measured in 2021. METHODS: Biomonitoring was performed on 49 volunteers, determining the urinary metabolites of the most abundant traffic pollutants, such as benzene and PAHs, and oxidative stress biomarkers by HPLC/MS-MS, 28 elements by ICP/MS and metabolic phenotypes by NMR. RESULTS: Means of s-phenylmercaputric acid (SPMA), metabolites of naphthalene and nitropyrene in 2020 are 20% lower than in 2021, while 1-OH-pyrene was 30% lower. A reduction of 40% for 8-oxo-7,8-dihydroguanosine (8-oxoGuo) and 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodGuo) and 60% for 8-oxo-7,8-dihydroguanine (8-oxoGua) were found in 2020 compared to 2021. The concentrations of B, Co, Cu and Sb in 2021 are significantly higher than in the 2020. NMR untargeted metabolomic analysis identified 35 urinary metabolites. Results show in 2021 a decrease in succinic acid, a product of the Krebs cycle promoting inflammation. CONCLUSIONS: Urban pollution due to traffic is partly responsible for oxidative stress of nucleic acids, but other factors also have a role, enhancing the importance of communication about a healthy lifestyle in the prevention of cancer diseases.

10.
Structure ; 30(8): 1062-1074.e4, 2022 08 04.
Article Dans Anglais | MEDLINE | ID: covidwho-1946637

Résumé

The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.


Sujets)
SARS-CoV-2 , Glycoprotéine de spicule des coronavirus , Benzène , Cryomicroscopie électronique , Simulation de dynamique moléculaire , Liaison aux protéines , Glycoprotéine de spicule des coronavirus/composition chimique , Glycoprotéine de spicule des coronavirus/génétique
11.
Thai Journal of Pharmaceutical Sciences ; 46(2):137-148, 2022.
Article Dans Anglais | EMBASE | ID: covidwho-1913271

Résumé

Introduction: Berberis tinctoria an evergreen shrub, endemic and predominantly found at a higher altitude of the Nilgiri Biosphere Reserve, India. This leaf and fruit are edible, which are also used in homeopathic remedies for countless illnesses. Objectives: B. tinctoria with diverse ethnomedicinal uses was focused in the prevailing study to detailed the phytochemical and pharmacological properties for further imminent research in this species. Materials and methods: Published data in this review were all gathered from the online bibliographical databases: PubMed, Elsevier, Scopus, Google Scholar, Web of Science, and local ethnic community peoples of Kurumba and Toda. Results: B. tinctoria was used as a Ayurvedic and homeopathy medicine by the tribal communities. The previous findings of B. tinctoria were used for skin diseases, wound healing, inflammatory, menorrhagia, diarrhea, jaundice, and a snakebites. The phytochemical studies revealed that secondary metabolites, antioxidants, and antimicrobial activity as a result of major alkaloid isoforms of berberine, berbamine, jatrorrhizine, etc. Conclusion: B. tinctoria is an important plant due to the presence of bioactive phytochemicals, especially berberine protoberberine group of benzylisoquinoline. As a result of its diverse ethnopharmacological importance, as well as numerous commercial products and novel bioactive compounds yet to be discovered for future drug discovery and development.

12.
Materials Today Energy ; 25, 2022.
Article Dans Anglais | Scopus | ID: covidwho-1773657

Résumé

Modern life-style is creating an indoor generation: human beings spend approximately 90% of their time indoors, almost 70% of which is at home – this trend is now exacerbated by the lockdowns/restrictions imposed due to the COVID-19 pandemic. That large amount of time spent indoors may have negative consequences on health and well-being. Indeed, poor indoor air quality is linked to a condition known as sick building syndrome. Therefore, breathing the freshest air possible is of outmost importance. Still, due to reduced ventilation rates, indoor air quality can be considerably worse than outdoor. Heating, ventilation, and air conditioning (HVAC), air filtration systems and a well-ventilated space are a partial answer. However, these approaches involve only a physical removal. The photocatalytic mineralization of pollutants into non-hazardous, or at least less dangerous compounds, is a more viable solution for their removal. Titanium dioxide, the archetype photocatalytic material, needs UVA light to be ‘activated’. However, modern household light emitting diode lamps irradiate only in the visible region of the solar spectrum. We show that the surface of titanium dioxide nanoparticles modified with copper oxide(s) and graphene has promise as a viable way to remove gaseous pollutants (benzene and nitrogen oxides) using a common light emitting diode bulb, mimicking real indoor lighting conditions. Titanium dioxide, modified with 1 mol% CuxO and 1 wt% graphene, proved to have a stable photocatalytic degradation rate, three times higher than that of unmodified titania. Materials produced in this research work are thus strong candidates for offering a safer indoor environment. © 2022 Elsevier Ltd

13.
Atmosphere ; 13(1):10, 2022.
Article Dans Anglais | ProQuest Central | ID: covidwho-1630745

Résumé

During the period from 17 March to 10 May 2020, France saw dramatic shifts in domestic, industrial and transport activities as a national lockdown was introduced. So far, studies have generally focused on urban settings, by contrast, this work reports data for a peri-urban location. Air samples were collected and analyzed using a fully automated GC-MS-FID system in an air quality monitoring station situated in the suburbs of Orléans, France. Average concentrations of BTEX (benzene, toluene, ethylbenzene, and xylenes) before, during, and after lockdown, were 402 ± 143, 800 ± 378 and 851 ± 445 pptv, respectively. Diurnal variation in BTEX and correlations between each of its components were analyzed to determine its various sources. The toluene/benzene (T/B) and m,p-xylene/ethylbenzene (MP/E) ratios, photochemical ages were used to explore whether the BTEX were from local or more distant sources. Together with a host of complementary measurements including NOx, O3, black carbon, meteorological parameters, and anthropogenic activities, we were able to make some inferences on the sources of BTEX. The results suggest that although anomalous local anthropogenic activity can lead to significant changes in BTEX concentrations, pollution levels in Orléans are mostly dependent on meteorological conditions, specifically whether the winds are coming from the Paris region. It appears, based on these measurements, that the pollution in the Orléans area is very much tied to the nearby megacity of Paris, this may be true for other peri-urban sites with implications for city planning and pollution mitigation strategies.

14.
Energies ; 15(2):565, 2022.
Article Dans Anglais | ProQuest Central | ID: covidwho-1630144

Résumé

Fly ash is the main by-product of coal combustion characterized by a large specific surface area. In addition to oxides, it also contains unburned coal and trace elements. This study aimed to investigate the possibility of using fly ash from pit-coal combustion (CFA) for the treatment of benzene-contaminated soil (S). The CFA was used as a mixture with Portland cement (PC) (70% PC + 30% CFA). The soil was treated with a PC-CFA mixture in amounts of 40, 60, and 80% of soil mass. During the process, the concentration of benzene was monitored with the flame-ionization detector. Produced monoliths (S+(PC-CFA)x) were tested for compressive strength and capillary water absorption. The experiment confirmed that the PC-CFA mixture limited benzene emission. The highest reduction in benzene concentration (34–39%) was observed for samples treated with the PC-CFA mixture in an amount of 80% (S+(PC-CFA)80). The average compressive strength of monoliths S+(PC-CFA)40, S+(PC-CFA)60, and S+(PC-CFA)80 was 0.57, 4.53, and 6.79 MPa, respectively. The water absorption values were in the range of 15–22% dm.

15.
Antimicrobial Resistance and Infection Control ; 10(SUPPL 2), 2021.
Article Dans Anglais | EMBASE | ID: covidwho-1629891

Résumé

Introduction: The rapid effectiveness of alcohol-based hand rub(ABHR) on microbial pathogens, including viral variants, inspired unprecedented demand for ABHR during the COVID-19 pandemic. A wide variety of new ABHR products that were rapidly produced and released to the public appear to have introduced new and unacceptable human safety risks. Objectives: While the long-term public health impact of exposure to adulterated ABHR will require further study, the immediate need to assess the safety and efficacy of ABHR motivated this study. Methods: Sampling of ABHR provided to the public in community settings (e.g., by a medical center) occurred across a wide variety of global community settings. When possible, ABHR samples of 30.50 ml were analyzed for: alcohol %, visible impurities and chemical impurities (i.e., acetal, acetaldehyde, benzene, and methanol). Validated analytical methods (good laboratory practices (GLP) or International Organization for Standardization (ISO) standards) were used for quantitative measurements. Photographs were taken for visual assessment of packaging design + labeling risks. Results: Alcohol concentrations less than a typical minimum antimicrobial efficacy level of 60% were measured in ≥ 7% of the ABHR samples. Unknown visible impurities were observed in ≥ 11% of samples. Levels of regulated impurities (acetal, acetaldehyde, benzene, and methanol) in excess of US FDA Guidance were observed in ≥ 43% of samples. Photographs demonstrate numerous risks associated with package design and open refillable ("bulk") dispensers, including no lot code nor expiry, and lack of traceable labeling. Conclusion: During the COVID-19 Emergency, demand for ABHR prompted new supply sources, followed by inscrutable donations of surplus products. Though unintended, allowing tainted and poor quality ABHR into communities places clinicians and the public at unnecessary risk. Guidance to consumers, businesses, and communities including medical centers, nursing homes, schools, offices, and retail settings, on the proper evaluation, use, and handling of ABHR, and safe disposal of adulterated or suspect product is needed. Regulatory guidance and enforcement addressing dangerous practices evident in this study including refilling of pump bottles/dispensers with a variety of ABHRs is needed immediately to reduce future exposure to unsafe, ineffective, mislabeled or unlabeled ABHR products.

SÉLECTION CITATIONS
Détails de la recherche